

Outline

ERL Cryomodules FFAG Recirculating Electron Rings 1.3-5.3 GeV eRHIC design and IR 6.6-21.2 GeV auxiliary detector subsystems luminosity monitoring system Energy Recovery Linac, 1.32 GeV electron polarimetry Electron Source low Q²-tagger forward proton tagger Summary

hadrons

100 meters

Detector II

The eRHIC design

Main features:

- hadron species: polarized protons (up to 250 GeV), polarized ³He⁺² ions (up to 167 GeV/u), heavy ions (typically ¹⁹⁷Au⁺⁷⁹ or ²³⁸U⁺⁹² ions (up to 100 GeV/u))
- polarized electrons: from 2 GeV up to 21 GeV
- high luminosity: 10^{33} - 10^{34} cm⁻²s⁻¹

A schematic of the interaction region

integrate detector systems into machine lattice to optimize acceptance and minimize backgrounds

The IR setup inside the detector simulation framework

incorporate machine lattice into EicRoot (https://wiki.bnl.gov/eic/index.php/Eicroot)

Luminosity monitoring system: ep bremsstrahlung process

- measure luminosity via e+p \rightarrow e+p+ γ
 - well known calculable pure QED process
 - large cross-section
- performance requirements:
 - need to know luminosity better than 1%
 - system needs to be fast enough to give live feedback to machine on luminosity steering
- photons are sharply forward-peaked
 - θ_{γ} is dominated by beam optics
 - need good control on beam parameters
- from measured photon rate, N_{γ} , photon acceptance, A, and cross section, σ , we can calculate the luminosity, L

$$L = \frac{N_{\gamma}}{A\sigma}$$

http://brock.physik.uni-bonn.de/~brock/feynman/misc/bethe-heitler.jpg

20 x 250 GeV ep collisions

Luminosity monitoring system: Proposed configuration

Luminosity monitoring system: Proposed configuration

- main features:
 - zero degree calo (Izdc)
 - pair spectrometer
- allows two measurements with very different backgrounds
 - Izdc in synch. fan
 - pair spec. not in synch. fan
 - pair spec is tunable to measure a certain photon energy range
 - pair spec reduces rate
- Major contributors to uncertainty
 - Izdc: knowledge of acceptance
 - lzcd: pileup
 - Izdc: pedestal shift from synch radiation
 - pair spec: knowledge of acceptance
 - pair spec: converter thickness
 - pair spec: pileup

Electron Polarimetry

- need to measure with high precision ~1%
- Compton backscattering will be used to monitor the bunch by bunch polarization
- can measure either the scattered photon or electron (or both)
- measure close to the IR and between spin rotators
- ideally want to measure both longitudinal and transverse components
 - longitudinal polarization leads to an energy asymmetry
 - transverse polarization leads to a position asymmetry
 - measure to ensure polarization is fully rotated
- Compton events produced by shining a laser on the electron beam while flipping the helicity state and measuring the resulting asymmetry

$$A_{\mathrm{exp}} = P_{e} P_{\gamma} A_{\ell}$$

Compton scattering

- most probable energy of scattered photon is at the Compton edge
- scattered photons highly collimated in electron beam direction
- fairly large analyzing power at the Compton edge

Longitudinal asymmetry (analyzing power)

A possible implementation of the polarimeter

figure courtesy of Vadim Ptitsyn (BNL)

Low Q²-tagger

- implement a dedicated electron detector for tagging low Q² events
- electrons from these events scatter at very small angle and are outside main detector acceptance
- machine designed so that apertures are rather large in the outgoing electron direction
- current idea is to have a calorimeter with tracking layers in front
- place as close to the beam as possible to maximize acceptance
- outside of primary synchrotron radiation fan

courtesy of Brett Parker (BNL)

A possible implementation of a low Q²-tagger

Physics with a low Q²-tagger

- acceptance of electrons from events down to Q² ~ 10⁻⁵ GeV²
- allows for further study of photoproduction physics
 - represents large portion of total cross section
 - probing the quark structure of photons
 - · direct vs resolved photon
 - look for change in event properties associated with transition of real to virtual photon

Background considerations in the low Q2-tagger

- a major background is the ep bremsstrahlung
 - high rate
- based on 10³³ cm⁻² s⁻¹ luminosity and 20x250 GeV ep collisions, expect roughly 2 brem. electrons per bunch crossing hitting the tagger
- brem. rate much larger than photoproduction rate
 - O(10³) difference in rates
- can veto these events
 - look for coincidence in the lumi monitor
 - ensure no activity in the main detector

Forward proton tagger

- considering installation of roman pots
 - sensors can be moved in and out
 - designed to go as close to the beam as is safely possible
 - this maximizes acceptance for forward going particles
- essential to tag forward going protons in exclusive reactions
 - for example exclusive DVCS events
 - will allow study of GPDs

A possible forward proton tagger implementation

roman pot acceptance: one station at 18m

- feed in MILOU simulations of DVCS events
 - following studies have no beam effects taken into account and event production at (0,0,0)
 - coordinates relative to the center of the beam

Summary

FFAG Recirculating Electron Rings

ERL Cryomodules

Electron Source

- We are working with the eRHIC machine design group at BNL to optimize the machine for the physics goals we want to pursue
- undergoing simulations to integrate auxiliary detector components into the machine design
 - luminosity monitor
 - electron polarimetry
 - low Q²-tagger
 - forward proton tagger
- presented progress of the reasonable design and placement of these detectors
- next step is to really focus on more specific technology choices and to more carefully study backgrounds and their effect on measurements

100 meters

Energy Recovery Linac,

1.32 GeV

Backups

Compton Scattering

- some references from which the following originates (and is the basis for the MC shown in the next few slides)
 - http://nuclear.uwinnipeg.ca/theses/dstorey_thesis.pdf
 - https://tel.archives-ouvertes.fr/tel-00920424/document
- note the following applies for α≈0
- define some convenient kinematic variables:
 - $\rho = k'/k'_{max}$ is the scattered photon energy relative to the compton edge
 - k'_{max} = $4ak\gamma^2$ is the maximum photon energy (compton edge)
 - $a = 1/(1+4k\gamma/m_e)$
 - k is the photon energy, E is the electron energy

Compton scattering cross section and longitudinal asymmetry

- QED calculation
- for laser crossing angle, α =0 and with respect to ρ (unpolarized):

$$\frac{d\sigma}{d\rho} = 2\pi r_0^2 a \left[\frac{\rho^2 (1-a)^2}{1-\rho(1-a)} + 1 + \left(\frac{1-\rho(1+a)}{1-\rho(1-a)} \right)^2 \right]$$
 (1)

The longitudinal asymmetry:

$$A_{\ell} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} = \frac{2\pi r_{0}^{2} a}{\frac{d\sigma}{dp}} (1 - \rho(1+a)) \left(1 - \frac{1}{(1 - \rho(1-a))^{2}}\right)$$
(2)

Investigating the size of the bremsstrahlung photon cone

- Want to ensure that the bremsstrahlung photon cone has good acceptance in the IR design
- Look at simulations from e+p → e+p+γ (unpolarized) from DJANGOH
- also compare to toy simulation of photons pulled from the Bethe-Heitler calculation
- fold in effect of beam optics
 - angle smearing from angular beam divergence
 - steering of vertex position also studied

Lumi monitor study – the e+p \rightarrow e+p+ γ process

- Two estimates of the expected angular distribution of Bremsstrahlung photons
 - Bethe-Heitler calculation

$$\frac{d\sigma}{d\Theta_{\gamma}} \approx \frac{\Theta_{\gamma}}{\left(\left(m_e/E_e\right)^2 + \Theta_{\gamma}^2\right)^2}$$

- DJANGOH simulation
 - MC generator for DIS and bremsstrahlung processes

Note: relative scaling (please ignore numbers on yaxis)

- typical angle of emission is less than 0.03mrad
- roughly factor of 10 less than contribution from beam divergence for top energy ep collisions (see next slide)
- +/- 4mrad cone is the approximate space available

Luminosity monitor study – beam optics

calculation of the angular beam divergence (in radians)

$$\sigma_{\theta} = \sqrt{\frac{\varepsilon}{\beta^* \gamma}}$$

- sigma_theta = angular beam divergence
- epsilon = (normalized) emittance (taken from table 3-1 of the eRHIC design report)
- gamma = lorentz factor
- beta* = beam optics parameter at IP (5cm taken from table 3-1)
- for 20x250 GeV e+p collisions

$$\sigma_{\theta} = \sqrt{\frac{23 \times 10^{-6}}{0.05 * 5 \times 10^{4}}} = 0.1 mrad$$

for other beam conditions

Addition of a close station at 4.25m

- necessary for acceptance at high t (most statistics starved phase space) electron beam prevents full 360° acceptance

Physics with a low Q²-tagger

- acceptance of electrons from events down to Q² ~ 10⁻⁵ GeV²
- allows for further study of photoproduction physics
 - represents large portion of total cross section
 - probing the quark structure of photons
 - · direct vs resolved photon
 - look for change in event properties associated with transition of real to virtual photon

